HOMEWORK 2 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 1.6: Inverse functions and logarithms

1.6.3. No; For example, even though $2 \neq 6$, f(2) = f(6) = 2

1.6.5. No (by the horizontal line test)

1.6.17. 0 (You want to find x such that g(x) = 4, that is, find x such that $x + e^x = 1$. Here, just guess!)

1.6.18.

- (a) By the horizontal line test
- (b) Domain of f^{-1} = Range of f = [-1,3]; Range of f^{-1} = Domain of f = [-3,3]
- (c) 0
- (d) ≈ -1.8

1.6.52.

- (a) $x = \pm \sqrt{1 + e^3}$
- (b) x = 0, ln(2) (Let $X = e^x$ and solve the equation $X^2 3X + 2 = 0$ (by using the quadratic formula), then solve for x using $e^x = X$)

1.6.63.

(a) $\frac{\pi}{3}$ (b) π

D) π

1.6.69. (Not on your problem set, but it's still an important problem. Also, 1.6.70 uses it) If $\theta = \sin^{-1}(x)$, then $\sin(\theta) = x$, then draw a triangle with hypothenuse 1, and opposite side x, and then the adjacent side becomes $\sqrt{1-x^2}$, and so our answer becomes:

$$\cos(\sin^{-1}(x)) = \cos(\theta) = \frac{adjacent}{hypotenuse} = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$$

See the handout "Proof of the derivative of arccos" for a similar problem; Or look at your notes taken in section!

1.6.70. $\tan(\sin^{-1} x) = \frac{\sin(\sin^{-1}(x))}{\cos(\sin^{-1}(x))} = \frac{x}{\sqrt{1-x^2}}$ by the result of number 69!

Date: Wednesday, September 13th, 2013.

PEYAM RYAN TABRIZIAN

Section 2.2: The limit of a function

2.2.2. If x approaches 1 from the left, then f(x) approaches 3; If x approaches 1 from the right, then f(x) approaches 7. No, left-hand-limits and right-hand-limits must be equal!

2.2.6.

(a) 4
(b) 4
(c) 4
(d) Undefined
(e) 1
(f) -1
(g) Does not exist (left and right-side limits not equal)
(h) 1
(i) 2
(j) Undefined
(k) 3

(l) Does not exist (h does not approach one fixed value as x approaches 5 from the left)

2.2.32. $-\infty$ (numerator approaches $e^{-5} > 0$ while denominator approaches 0^{-5}

2.2.33. $-\infty$ ($x^2 - 9$ approaches 0^+ and $\ln(0^+) = -\infty$

2.2.46. The mass blows up to $\infty \left(\frac{v^2}{c^2}\right)$ goes to 1^- , so the denominator of the fraction goes to 0^+ , and so the whole fraction goes to ∞)

Section 2.3: Calculating limits using the limit laws

2.3.9. Just plug in x = 2

2.3.18. 12 (Use the formula $(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$)

2.3.29. $\frac{1}{2}$ (put under a common denominator and multiply by the conjugate form)

2.3.32. $-\frac{2}{x^3}$ (put under a common denominator and expand the numerator out)

2.3.37. 7 (use the squeeze theorem)

2.3.40. 0 (by squeeze theorem, because $-1 \le \sin\left(\frac{\pi}{x}\right) \le 1$)

2.3.60. Let a = 0 and $f(x) = \sin\left(\frac{1}{x}\right)$ (or $\frac{1}{x}$), and g(x) = -f(x).

2.3.61. Let a = 0 and $f(x) = \sin\left(\frac{1}{x}\right)$ (or $\frac{1}{x}$), and $g(x) = \frac{1}{f(x)}$

2.3.64. Hints: Use the following steps:

(a) Find the coordinates of Q. For this, solve for x and y in the system of equations:

$$\begin{cases} (x-1)^2 + y^2 = 1 \\ x^2 + y^2 = r^2 \end{cases}$$

For this, plug in $y^2 = r^2 - x^2$ in the first equation and solve for x, then solve for y in $y^2 = r^2 - x^2$; remember that you want x > 0 and y > 0, according to the picture). The answer gives you the coordinates of Q

- (b) Now that you know the coordinates of P and Q, find the equation of the line going through P and Q
- (c) Find the x-intercept of that line (set y = 0 and solve for x)
- (d) Finally, take the limit as $r \to 0^+$ of the answer you found in (c). To do this, multiply as usual by the conjugate form.

Answers:

(a)
$$Q = (\frac{r^2}{2}, r\sqrt{1 - \frac{r^2}{4}})$$

(b) $y = \frac{2}{r} \left(\sqrt{1 - \frac{r^2}{4}} - 1\right) x + r$
(c) $x - \text{intercept} = \frac{r^2}{2\left(1 - \sqrt{1 - \frac{r^2}{4}}\right)}$