HOMEWORK 2 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 1.6: Inverse functions and Logarithms

1.6.3. No; For example, even though $2 \neq 6, f(2)=f(6)=2$
1.6.5. No (by the horizontal line test)
1.6.17. 0 (You want to find x such that $g(x)=4$, that is, find x such that $x+e^{x}=1$. Here, just guess!)

1.6.18.

(a) By the horizontal line test
(b) Domain of $f^{-1}=$ Range of $f=[-1,3]$; Range of $f^{-1}=$ Domain of $f=$ $[-3,3]$
(c) 0
(d) ≈-1.8

1.6.52.

(a) $x= \pm \sqrt{1+e^{3}}$
(b) $x=0, \ln (2)\left(\right.$ Let $X=e^{x}$ and solve the equation $X^{2}-3 X+2=0$ (by using the quadratic formula), then solve for x using $e^{x}=X$)

1.6.63.

(a) $\frac{\pi}{3}$
(b) π
1.6.69. (Not on your problem set, but it's still an important problem. Also, 1.6.70 uses it) If $\theta=\sin ^{-1}(x)$, then $\sin (\theta)=x$, then draw a triangle with hypothenuse 1 , and opposite side x , and then the adjacent side becomes $\sqrt{1-x^{2}}$, and so our answer becomes:

$$
\cos \left(\sin ^{-1}(x)\right)=\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}
$$

See the handout "Proof of the derivative of arccos" for a similar problem; Or look at your notes taken in section!
1.6.70. $\tan \left(\sin ^{-1} x\right)=\frac{\sin \left(\sin ^{-1}(x)\right)}{\cos \left(\sin ^{-1}(x)\right)}=\frac{x}{\sqrt{1-x^{2}}}$ by the result of number 69 !

[^0]
Section 2.2: The limit of a function

2.2.2. If x approaches 1 from the left, then $f(x)$ approaches 3 ; If x approaches 1 from the right, then $f(x)$ approaches 7. No, left-hand-limits and right-hand-limits must be equal!

2.2.6.

(a) 4
(b) 4
(c) 4
(d) Undefined
(e) 1
(f) -1
(g) Does not exist (left and right-side limits not equal)
(h) 1
(i) 2
(j) Undefined
(k) 3
(l) Does not exist (h does not approach one fixed value as x approaches 5 from the left)
2.2.32. $-\infty$ (numerator approaches $e^{-5}>0$ while denominator approaches 0^{-}
2.2.33. $-\infty\left(x^{2}-9\right.$ approaches 0^{+}and $\ln \left(0^{+}\right)=-\infty$
2.2.46. The mass blows up to $\infty\left(\frac{v^{2}}{c^{2}}\right.$ goes to 1^{-}, so the denominator of the fraction goes to 0^{+}, and so the whole fraction goes to ∞)

Section 2.3: Calculating limits using the limit laws

2.3.9. Just plug in $x=2$
2.3.18. 12 (Use the formula $\left.(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}\right)$
2.3.29. $\frac{1}{2}$ (put under a common denominator and multiply by the conjugate form)
2.3.32. $-\frac{2}{x^{3}}$ (put under a common denominator and expand the numerator out)
2.3.37. 7 (use the squeeze theorem)
2.3.40. 0 (by squeeze theorem, because $-1 \leq \sin \left(\frac{\pi}{x}\right) \leq 1$)
2.3.60. Let $a=0$ and $f(x)=\sin \left(\frac{1}{x}\right)$ (or $\frac{1}{x}$), and $g(x)=-f(x)$.
2.3.61. Let $a=0$ and $f(x)=\sin \left(\frac{1}{x}\right)$ (or $\frac{1}{x}$), and $g(x)=\frac{1}{f(x)}$
2.3.64. Hints: Use the following steps:
(a) Find the coordinates of Q. For this, solve for x and y in the system of equations:

$$
\left\{\begin{aligned}
(x-1)^{2}+y^{2} & =1 \\
x^{2}+y^{2} & =r^{2}
\end{aligned}\right.
$$

For this, plug in $y^{2}=r^{2}-x^{2}$ in the first equation and solve for x, then solve for y in $y^{2}=r^{2}-x^{2}$; remember that you want $x>0$ and $y>0$, according to the picture). The answer gives you the coordinates of Q
(b) Now that you know the coordinates of P and Q, find the equation of the line going through P and Q
(c) Find the x-intercept of that line (set $y=0$ and solve for x)
(d) Finally, take the limit as $r \rightarrow 0^{+}$of the answer you found in (c). To do this, multiply as usual by the conjugate form.
Answers:
(a) $Q=\left(\frac{r^{2}}{2}, r \sqrt{1-\frac{r^{2}}{4}}\right)$
(b) $y=\frac{2}{r}\left(\sqrt{1-\frac{r^{2}}{4}}-1\right) x+r$
(c) x - intercept $=\frac{r^{2}}{2\left(1-\sqrt{1-\frac{r^{2}}{4}}\right)}$
(d) 4

[^0]: Date: Wednesday, September 13th, 2013.

